Identification of a toluene-degrading bacterium from a soil sample through H(2)(18)O DNA stable isotope probing.
نویسندگان
چکیده
DNA stable isotope probing (DNA-SIP) with H(2)(18)O was used to identify a toluene-degrading bacterium in soil amended with 48 ppm toluene. After quantification of toluene degradation rates in soil, DNA was extracted from soil incubated with H(2)(18)O, H(2)(16)O, H(2)(16)O and 48 ppm toluene, or H(2)(18)O and 48 ppm toluene. A single DNA band formed along a cesium chloride gradient after isopycnic centrifugation of extracts from soils incubated with H(2)(16)O. With extracts from soils to which only H(2)(18)O was added, two distinct DNA bands formed, while three bands formed when DNA extracted from soil incubated with both H(2)(18)O and toluene was analyzed. We suggest that this third band formed because toluene does not contain any oxygen atoms and toluene-degrading organisms had to transfer oxygen atoms from H(2)(18)O into metabolic intermediates to form nucleic acids de novo. We extracted the third DNA band and amplified a large fraction of the bacterial 16S rRNA gene. Direct sequencing of the PCR product obtained from the labeled DNA, as well as cloned 16S rRNA amplicons, identified a known toluene degrader, Rhodococcus jostii RHA1. A toluene-degrading bacterial strain was subsequently isolated from soil and shown to be Rhodococcus jostii RHA1. Finally, quantitative real-time PCR analysis showed that the abundance of the 16S rRNA gene of Rhodococcus jostii RHA1 increased in soil after toluene exposure but not in soils from which toluene was withheld. This study indicates that H(2)(18)O DNA-SIP can be a useful method for identifying pollutant-degrading bacteria in soil.
منابع مشابه
Identification of a novel toluene-degrading bacterium from the candidate phylum TM7, as determined by DNA stable isotope probing.
The dominant bacterium responsible for carbon uptake from toluene in an agricultural soil was identified by stable isotope probing. Samples were amended with unlabeled toluene or labeled [ring-(13)C(6)]toluene, and DNA was extracted over time. Sequencing indicated that the organism involved belongs to the candidate phylum TM7. Microorganisms in this candidate phylum are of particular interest b...
متن کاملCharacterization of growing microorganisms in soil by stable isotope probing with H218O.
A new approach to characterize growing microorganisms in environmental samples based on labeling microbial DNA with H(2)(18)O is described. To test if sufficient amounts of (18)O could be incorporated into DNA to use water as a labeling substrate for stable isotope probing, Escherichia coli DNA was labeled by cultivating bacteria in Luria broth with H(2)(18)O and labeled DNA was separated from ...
متن کاملDraft Genome Sequence of Uncultivated Toluene-Degrading Desulfobulbaceae Bacterium Tol-SR, Obtained by Stable Isotope Probing Using [13C6]Toluene
The draft genome of a member of the bacterial family Desulfobulbaceae (phylum Deltaproteobacteria) was assembled from the metagenome of a sulfidogenic [(13)C6]toluene-degrading enrichment culture. The "Desulfobulbaceae bacterium Tol-SR" genome is distinguished from related, previously sequenced genomes by suites of genes associated with anaerobic toluene metabolism, including bss, bbs, and bam.
متن کاملStable Isotope Probing Identifies Novel m-Xylene Degraders in Soil Microcosms from Contaminated and Uncontaminated Sites
The remediation of groundwater contaminated with benzene, toluene, ethylbenzene, and the xylenes (BTEX) typically involves in situ biodegradation. Although the mechanisms of aerobic BTEX biodegradation in laboratory cultures have been well studied, less is known about the microorganisms responsible in mixed culture samples or at contaminated sites. In this study, the microorganisms responsible ...
متن کاملIsolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium.
A novel sulfate-reducing bacterium isolated from fuel-contaminated subsurface soil, strain PRTOL1, mineralizes toluene as the sole electron donor and carbon source under strictly anaerobic conditions. The mineralization of 80% of toluene carbon to CO2 was demonstrated in experiments with [ring-U-14C]toluene; 15% of toluene carbon was converted to biomass and nonvolatile metabolic by-products, p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 77 17 شماره
صفحات -
تاریخ انتشار 2011